El enlace metálico



Introducción.

Modelo de la nube de electrones.

Teoría de bandas.

Propiedades de los metales.




Introducción:

Es el tipo de enlace que se produce cuando se combinan entre sí los elementos metálicos; es decir, elementos de electronegatividades bajas y que se diferencien poco.

Los metales forman unas redes metálicas compactas; es decir, con elevado índice de coordinación, por lo que suelen tener altas densidades. Las redes suelen ser hexagonales y cúbicas.

Hay dos modelos que explican la formación del enlace metálico. El modelo de la nube de electrones y la teoría de bandas.


Modelo de la nube de electrones:

Según este modelo, los átomos metálicos ceden sus electrones de valencia a una "nube electrónica" que comprende todos los átomos del metal. Así pues, el enlace metálico resulta de las atracciones electrostáticas entre los restos positivos y los electrones móviles que pertenecen en su conjunto a la red metálica.

En el enlace metálico, los electrones no pertenencen a ningún átomo determinado. Además, es un enlace no dirigido, porque la nube electrónica es común a todos los restos atómicos que forman la red.

Hay que aclarar que los átomos cuando han cedido los electrones a la nube común, no son realmente iones, ya que los electrones quedan dentro de la red, perteneciendo a todos los "restos positivos".

Este modelo es muy simple y sirve para interpretar muchas de las propiedades de los metales; aunque tiene ciertas limitaciones, principalmente en la explicación de la diferente conductividad de algunos metales.

Teoría de bandas:

Esta teoría representa un modelo más elaborado para explicar la formación del enlace metálico; se basa en la teoría de los orbitales moleculares. Esta teoría mantiene que cuando dos átomos enlazan, los orbitales de la capa de valencia se combinan para formar dos orbitales nuevos que pertenecen a toda la molécula, uno que se denomina enlazante (de menor energía) y otro antienlazante (de mayor energía). Si se combinasen 3 átomos se formarían 3 orbitales moleculares, con una diferencia de energía  entre ellos menor que en el caso anterior. En general, cuando se combinan N orbitales, de otros tantos átomos, se obtienen N orbitales moleculares de energía muy próxima entre sí, constituyendo lo que se llama una "banda"

En los metales existe un número muy grande de orbitales atómicos para formar enlaces deslocalizados que pertenezcan a toda la red metálica (como si fuese una gran molécula). Como el número de orbitales moleculares es muy grande forman una banda en la que los niveles de energía, como se ha dicho anteriormente, están muy próximos. Teoría de bandas

En los metales se forman dos bandas. Una en la que se encuentran los electrones de la capa de valencia que se denomina "banda de valencia" y otra que se llama "banda de conducción" que es la primera capa vacía.

En los metales, la banda de valencia está llena o parcialmente llena; pero en estas sustancias, la diferencia energética entre la banda de valencia y la de conducción es nula; es decir están solapadas. Por ello, tanto si la banda de valencia está total o parcialmente llena, los electrones pueden moverse a lo largo de los orbitales vacios y conducir la corriente eléctrica al aplicar una diferencia de potencial.

En el caso de los aislantes la banda de valencia está completa y la de conducción vacía; pero a diferencia de los metales, no sólo no solapan sino que además hay una importante diferencia de energía entre una y otra (hay una zona prohibida) por lo que no pueden producirse saltos electrónicos de una a otra. Es decir, los electrones no gozan de la movilidad que tienen en los metales y, por ello, estas sustancias no conducen la corriente eléctrica.

Un caso intermedio lo constituyen los semiconductores, en el caso de las sustancias de este tipo, la banda de valencia también está llena y hay una separación entre las dos bandas, pero la zona prohibida no es tan grande, energéticamente hablando, y algunos electrones pueden saltar a la banda de conducción. Estos electrones y los huecos dejados en la banda de valencia permiten que haya cierta conductividad eléctrica. La conductividad en los semiconductores aumenta con la temperatura, ya que se facilitan los saltos de los electrones a la banda de conducción. Son ejemplos de semiconductores: Ge, Si, GaAs y InSb.

Propiedades de los metales:

  • A excepción del mercurio, los metales puros son sólidos a temperatura ambiente. No obstante, sus puntos de fusión son muy variables, aunque generalmente altos.

  • Son buenos conductores de la electricidad y del calor.

  • Presentan un brillo característico.

  • Son dúctiles y maleables. Esto es debido a la no direccionalidad del enlace metálico y a que los "restos positivos"  son todos similares, con lo que cualquier tracción no modifica la estructura de la red metálica, no apareciendo repulsiones internas.

  • Presentan el llamado "efecto fotoeléctrico"; es decir, cuando son sometidos a una radiación de determinada energía, emiten electrones.

  • Se suelen disolver unos en otros formando disoluciones que reciben el nombre de aleaciones